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Letters
A concise and stereoselective synthesis of (+)- and
())-deoxoprosophylline
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Abstract—An efficient synthesis of (+)- and ())-deoxoprosophylline was accomplished from the readily available cis-2-butene-1,4-
diol in which the Sharpless asymmetric dihydroxylation was used as the key step.
� 2003 Elsevier Ltd. All rights reserved.
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Scheme 1. Retrosynthetic analysis for 2.
Multifunctionalized piperidine alkaloids possessing the
2,6-disubstituted piperidin-3-ol skeleton have been
found abundantly in nature.1 Prosopis alkaloids, one of
the subgroups of these piperidine alkaloids, were iso-
lated from Prosopis africana Taub.2 Structurally, these
compounds possessing a polar head group and a
hydrophobic aliphatic tail can be considered as cyclic
analogues of the membrane lipid sphingosine.3 Besides
their interesting structural features, these polysubsti-
tuted piperidine alkaloids exhibit a variety of pharma-
cological properties, such as anaesthetic, analgesic, and
antibiotic activities.4

Although many elegant synthesis of (+)- and ())-
deoxoprosophylline have been documented in the liter-
ature,5 most of the syntheses use chiral pool starting
materials such as sugars, amino acids and involve many
steps. Due to their interesting structural features and the
biological significance of this class of compounds, we
were encouraged to design a short and effective synthesis
of (+)- and ())-deoxoprosophylline, using Sharpless
asymmetric dihydroxylation as the source of chirality.
Scheme 1 shows our retrosynthetic analysis for deoxo-
prosophylline. As illustrated in Scheme 1, the retrosyn-
thetic strategy envisions the use of hydroxy lactone 8 as
the key intermediate for the proposed synthesis, which
would be formed from the allylic alcohol 6 by a Claisen
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orthoester rearrangement and Sharpless asymmetric di-
hydroxylation.

As outlined in Scheme 2, the desired monoprotected
allylic alcohol 6 was prepared in two steps from the
inexpensive and readily available cis-2-butene-1,4-diol 5
according to the literature procedure.6 Claisen rear-
rangement of the allylic alcohol 6 with triethyl ortho-
acetate in the presence of catalytic propionic acid at
140 �C gave the, c,d-unsaturated ester 7.7 Sharpless
asymmetric dihydroxylation8 employing AD-mix-a and
in situ cyclization of the, c,d-unsaturated ester 7 fur-
nished the hydroxy lactone 8. Mesylation of the hydroxy
lactone 8 and displacement of the mesylate with NaN3 in
DMF at 90 �C gave the azido lactone 10. The azide was
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Scheme 2. Reagents and conditions: (a) CH3C(OEt)3, cat. propionic acid, 140 �C, 2 h, 94%; (b) AD-mix-a, CH3SO2NH2, t-BuOH:H2O (1:1), 24 h,

0 �C, 95%, 93% ee; (c) CH3SO2Cl, Et3N, DCM, 92%; (d) NaN3, DMF, 90 �C, 89%; (e) i. TPP, H2O, C6H6, 8 h, ii. CbzCl, Et3N, cat. DMAP, DCM,

75% for two steps; (f) C12H25SO2Ph, n-BuLi, THF, )78 �C, 2 h, 94%; (g) 6% Na–Hg, Na2HPO4, CH3OH, )10 �C, 95%; (h) 20% Pd(OH)2/C, H2,

CH3OH, rt, 24 h, 76%.
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reduced to the amine by using triphenylphosphine and
water and the resulting amine was protected as its Cbz
derivative by using CbzCl, TEA in the presence of a
catalytic amount of DMAP.

Opening of the lactone of 11 was achieved using
C12H25SO2Ph and n-BuLi.9;10 Desulfonylation of 12
using 6% Na–Hg and Na2HPO4 at )10 �C gave the
ketone 13.11 Removal of the protecting groups and cy-
clization of the ketone 13 using catalytic Pd(OH)2 and
H2 in a one pot reaction, afforded (+)-deoxoproso-
phylline 2 in 76% yield.Having accomplished the synthesis
of natural 2, we turned our attention towards the syn-
thesis of its enantiomer. Accordingly, c,d-unsaturated
ester 7 was transformed in a similar fashion to afford
())-deoxoprosophylline 4 following a similar sequence
however, using AD-mix-b. The physical and spectro-
scopic data of our synthetic materials 212 and 4 were in
good agreement with those described in the literature.5d;e

In summary, (+)- and ())-deoxoprosophylline were
synthesized in efficient yields from readily available cis-
2-butene-1,4-diol. The present synthesis of (+)- and ())-
deoxoprosophylline having an overall yield of 37% in
eight steps starting from the known allyl alcohol 6 is
better than earlier reported syntheses. By using Sharp-
less asymmetric dihydroxylation as the key step, we have
demonstrated that both enantiomers of deoxoprosophyl-
line can be readily accessed.
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1H NMR (200MHz, CDCl3)
d, ppm: 0.88 (3H, t, J ¼ 6:5Hz), 1.26 (24H, m), 1.72–1.79
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(1H, m), 2.02–2.06 (1H, m), 2.54–2.58 (2H, m), 2.98 (3H,
br), 3.47 (1H, dt, J ¼ 10:1, 4.3Hz), 3.71 (1H, dd, J ¼ 10:9,
5.1Hz), 3.83 (1H, dd, J ¼ 10:9, 4.3Hz).
13C NMR (50MHz) d: 14.18, 22.75, 26.27, 29.37, 29.7,
29.8, 30.83, 31.97, 33.77, 36.35, 56.23, 63.4, 63.88,
69.8 ppm.
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